Bone Grafts References

  1. Currey, JD. The Structure of Bone Tissue”, pp. 12–14 in Bones: Structure and Mechanics. [2002] Princeton University Press. Princeton, NJ. ISBN 9781400849505
  2. add ref mech properties an anisotropy
  3. Sorensen J, Ullmark G, Langstrom B, Nilsson O. Rapid bone and blood flow formation in impacted morselized allografts. Acta Orthop Scand 2003;74:633-643.
  4. Ullmark G, Sorensen J, Langstrom B, Nilsson O. Bone regeneration 6 years after impaction bone grafting: A PET analysis. Acta Orthop 2007;78:201-205.
  5. Tägil M, Aspenberg P. Impaction of cancellous bone grafts impairs osteoconduction in titanium chambers. Clin Orthop 1998;352:231-238.
  6. Tägil M, Aspenberg P. Fibrous tissue armoring increases the mechanical strength of an impacted bone graft. Acta Orthop Scand 2001;72:78-82.
  7. Weidenhielm LR, Mikhail WE, Wretenberg P, Fow J, Simpson J, Bauer TW. Analysis of the retrieved hip after revision with impaction grafting. Acta Orthop Scand 2001;72:609-614.
  8. Linder L. Cancellous impaction grafting in the human femur: histological and radiographic observations in 6 autopsy femurs and 8 biopsies. Acta Orthop Scand 2000;71:543-552.
  9. Virolainen P, Vuorio E, Aro HT. Different healing rates of bone autografts, syngeneic grafts, and allografts in an experimental rat model. Arch Orthop Trauma Surg 1997;116:486-491.
  10. Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM. Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg Am 1997;79:1-16.
  11. Bavadekar A, Cornu O, Godts B, Delloye C, Van Tomme J, Banse X. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads. Acta Orthop Scand 2001;72:470-476.
  12. Goldberg VM. Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Relat Res 2000;381:68-76.
  13. Eldridge JDJ, Hubble K, Nelson K, Smith EJ, Learmonth ID. The effect of bone chip size on initial stability following femoral impaction grafting. J Bone Joint Surg Br 1997;79:364.
  14. Wallace IW, Ammon PR, Day R, Lee DA, Beaver RJ. Does size matter? An investigation into the effects of particle size on impaction grafting in vitro. J Bone Joint Surg Br 1997;79:365-366.
  15. Giesen EB, Lamerigts NM, Verdonschot N, Buma P, Schreurs BW, Huiskes R. Mechanical characteristics of impacted morsellised bone grafts used in revision of total hip arthroplasty. J Bone Joint Surg Br 1999;81:1052-1057.
  16. Bolder SBT, Schreurs BW, Verdonschot N, van Unen JMJ, Gardeniers JWM, Slooff TJJH. Particle size of bone graft and method of impaction affect initial stability of cemented cups – Human cadaveric and synthetic pelvic specimen studies. Acta Orthop Scand 2003;74:652-657.

40B.  Arts JJ, Schreurs BW, Buma P, Verdonschot N. Cemented cup stability during lever-out testing after acetabular bone impaction grafting with bone graft substitutes mixes containing morselized cancellous bone and tricalcium phosphate–hydroxyapatite granules. Proc Inst Mech Eng H. 2005 Jul;219(4):257-63.

  1. Ullmark G. Bigger size and defatting of bone chips will increase cup stability. Arch Orthop Trauma Surg 2000;120:445-447.
  2. Dunlop DG, Brewster NT, Madabhushi SPG, Usmani AS, Pankaj P, Howie CR. Techniques to improve the shear strength of impacted bone graft – The effect of particle size and washing of the graft. J Bone Joint Surg Am 2003;85:639-646.
  3. Höstner J, Hultmark P, Kärrholm J, Malchau H, Tveit M. Impaction technique and graft treatment in revisions of the femoral component: laboratory studies and clinical validation. J Arthroplasty 2001;16:76-82.
  4. Van Der Donk S, Weernink T, Buma P, Aspenberg P, Slooff TJ, Schreurs BW. Rinsing morselized allografts improves bone and tissue ingrowth. Clin Orthop 2003;408:302-310.
    44B. Arts JJ, Verdonschot N, Buma P, Schreurs BW. Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups: experiments using a synthetic acetabular model. Acta Orthop. 2006 Apr;77(2):227-33.
  5. Thoren K, Aspenberg P, Thorngren KG. Lipid extracted bank bone. Bone conductive and mechanical properties. Clin Orthop 1995;311:232-246.
  6. Sherman RM, Byrick RJ, Kay JC, Sullivan TR, Waddell JP. The role of lavage in preventing hemodynamic and blood-gas changes during cemented arthroplasty. J Bone Joint Surg Am 1983;65:500-506.
  7. Byrick RJ, Bell RS, Kay JC, Waddell JP, Mullen JB. High-volume, high-pressure pulsatile lavage during cemented arthroplasty. J Bone Joint Surg Am 1989;71:1331-1336.
  8. Hamer AJ, Stockley I, Elson RA. Changes in allograft bone irradiated at different temperatures. J Bone Joint Surg Br 1999;81:342-344.
  9. Anderson MJ, Keyak JH, Skinner HB. Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am 1992;74:747-752.
  10. Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 2000;18:426-431.
  11. Cornu O, Bavadekar A, Godts B, Van Tomme J, Delloye C, Banse X. Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morselizedgrafts – Experiments in cadavers. Acta Orthop Scand 2003;74:553-558.
  12. Robinson DE, Lee MB, Smith EJ, Learmonth ID. Femoral impaction grafting in revision hip arthroplasty with irradiated bone. J Arthroplasty 2002;17:834-840.
  13. Bankes MJK, Allen PW, Aldam CH. Results of impaction grafting in revision hip arthroplasty at two to seven years using fresh and irradiated allograft bone. Hip Int 2003;13:1-11.
  14. Holt GM, Stockley I, Elson RA, Ibbotson C. A comparison of the performance of irradiated and non-irradiated bone graft in hip surgery. Hip Int 2001;11:18-24.
  15. Buckley SC, Stockley I, Hamer AJ, Kerry RM. Irradiated allograft bone for acetabular revision surgery. Results at a mean of five years. J Bone Joint Surg Br 2005;87:310-313.
  16. Hamer AJ, Suvarna SK, Stockley I. Histologic evidence of cortical allograft bone incorporation in revision hip surgery. J Arthroplasty 1997;12:785-789.
  17. Moreau MF, Gallois Y, Basle MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 2000;21:369-376.
  18. Aspenberg P, Lindqvist SB. Ethene oxide and bone induction. Controversy remains. Acta Orthop Scand 1998;69:173-176.
  19. Aspenberg P, Johnsson E, Thorngren KG. Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg Br 1990;72:1036-1037.
  20. Thoren K, Aspenberg P. Ethylene oxide sterilization impairs allograft incorporation in a conduction chamber. Clin Orthop 1995;318:259-264.
  21. Moore TM, Artal R, Arenas M, Gendler E. Influence of postmortem time and temperature on osteoinductive activity of demineralized microperforated ethylene oxide-sterilized syngeneic bone implant in the rat. Clin Orthop Relat Res 1990;259:239-244.
  22. Sigholm G, Gendler E, McKellop H, Marshall GJ, Moore TM, Sarmiento A. Graft perforations favor osteoinduction. Studies of rabbit cortical grafts sterilized with ethylene oxide. Acta Orthop Scand 1992;63:177-182.
  23. Wall OR, Duffy D, MacDonald DA. Behaviour of impacted morcelised acetabular allograft in revision hip surgery. J Bone Joint Surg Br Suppl 2004;86:68.
  24. Cornu O, Bavadekar A, Godts B, Van Tomme J, Delloye C, Banse X. Impaction bone grafting with freeze-dried irradiated bone. Part I. Femoral implant stability – Cadaver experiments in a hip simulator. Acta Orthop Scand 2003;74:547-552.
  1. Mazhar Tokgozoglu A, Aydin M, Atilla B, Caner B. Scintigraphic evaluation of impaction grafting for total hip arthroplasty revision. Arch Orthop Trauma Surg 2000;120:416-419.
  2. de Roeck NJ, Drabu KJ. Impaction bone grafting using freeze-dried allograft in revision hip arthroplasty. J Arthroplasty 2001;16:201-206.
  3. Thien TM, Welten ML, Verdonschot N, Buma P, Yong P, Schreurs BW. Acetabular revision with impacted freeze-dried cancellous bone chips and a cemented cup: a report of 7 cases at 5 to 9 years’ follow-up. J Arthroplasty 2001;16:666-670.
  4. Russel N.A., Rives A., Pelletier M.H., Bruce W.J. & Walsh W.R. (2013). The effect of sterilization methods on the osteoconductivity of allograft bone in a critical sized bilateral tibial defect model in rabbits. Biomaterials, 34 (33), 8185-94.
  5. Nguyen, H. et al. (2013). Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts. Bone, 57 (1), 194-200.
  6. Almeida O.M. et al. (2013). Comparative study and histomorphometric analysis of bone allografts lyophilized and sterilized by autoclaving, gamma irradiation and ethylene oxide in rats. Acta Cirurgica Brasileira, 28 (1), 66-71
  7. Nicols A., Burns D.C. & Christopher R. (2009). Studies on the Sterilization of Human Bone and Tendon Musculoskeletal Allograft Tissue using Supercritical Carbon Dioxide. Journal of Orthopaedics, 6 (2), 12-12.
  8. Fages, J. et al. (1998) Viral Inactivation of Human Bone Tissue Using Supercritical Fluid Extraction. ASAIO Journal, 44 (4), 289-293